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Abstract This paper presents the development of an Augmented Reality mo-
bile application which aims at sensibilizing young children to abstract concepts
of music. Such concepts are, for instance, the musical notation or the concept
of rythm. Recent studies in Augmented Reality for education suggest that such
technologies have multiple benefits for students, including younger ones. As
mobile document image acquisition and processing gains maturity on mobile
platforms, we explore how it is possible to build a markerless and real-time ap-
plication to augment the physical documents with didactical animations and
interactive content. Given a standard image processing pipeline, we compare
the performance of different local descriptors at two key stages of the process.
Results suggest alternatives to the SIFT local descriptors, regarding result
quality and computationnal efficiency, both for document model identification
and pespective transform estimation. All experiments are performed on an
original and public dataset we introduce here.
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1 Introduction

This paper presents the design and the solving of technical challenges related
to the development of an Augmented Reality (AR) mobile application which
aims at raising awareness and teaching younger children the musical notation,
the relation between music, lyrics and animations, and popular songs. This
application is called “Augmented Songbook”. AR presents very attractive po-
tential benefits for language learning. In our case, the developed application
explicits the links between: a document and its embedded message; the mu-
sical score, the sound played by some instrument and the keys pressed on a
virtual keyboard; the lyrics, the music played, and animations related to the
story of the song. Figure 1 illustrates how augmented content is superimposed
on a page of the songbook.

We focus in this paper on a key challenge for educational AR tools: the
difficulty to maintain superimposed information [3]. Our goal is to present
an AR framework suitable for building efficient applications, avoiding poor
interaction design which can lead to “ineffective learning”, “disorientation”
and “cognitive overload”, according to Yilmaz [37]. This requires to be able,
at the same time, to identify which document (among a database of known
documents) the user is aiming at, and what is the position of such document
on the device’s screen. Such process must be tolerant to motion, perspective
distortion and illumination variations to face realistic usage conditions. Fur-
thermore, a few extra constraints related to the nature of the project are to
be considered: we aim at avoiding marker-based AR technologies to remove all
distracting content for the children; and the technologies used must be able to
deal with documents containing little text and texture. Such conditions usu-
ally hurt significantly the performance of existing image matching techniques.

This paper presents the following contributions, based on the observation
that, while document image matching using local descriptors is promising,
little work has been published to present how such architecture works and
how it performs on real conditions (Section 2):

– we explain how a document image matching architecture can be used to
implement an AR platform which can run on mobile devices (Section 3);

– we detail the internals of each key component of this architecture, and
present the local descriptor methods under test (Section 4);

– we introduce a new public dataset designed to benchmark our AR platform
and enable reproducibility (Section 5);

– we benchmark several local descriptors on realistic data, providing guidance
for implementing such system (Section 6).

In order to illustrate how those contributions were integrated in the Augmented

Songbook project, we also present some of the deployment setups used to enable
children and parents to try out this pedagogical prototype (Section 7).
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a)

b) c)

Fig. 1: Illustration of the augmented contents of the proposed application.
(a) User’s perspective, pointing the mobile device towards one of the docu-
ments e.g. (b), enables the augmented contents (c): graphic animations, posi-
tion of the next note to play and assisted virtual keyboard to play the tune.

2 Background

2.1 Augmented Reality in Education

Recent studies in Augmented Reality for education [3] suggest that such tech-
nologies have multiple benefits for students, including younger ones [8]. Both
parents [8] and children [37] consistently exhibit a positive attitude regarding
well-designed educational applications. Motivation, learning gains, interaction
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and collaboration are viewed as key advantages [3] of such tools which enable
“superimposing virtual information to real objects”.

During the last years, a number of the so called technology-enhanced learn-
ing applications have been presented for teaching diverse abstract concepts.
For instance in [2], AR technology is used to teach geometry concepts, in [5]
an AR book is used to teach number to preschool children, in [11] an AR app
introduces electronic fundamental concepts, in [22] AR is used to learn about
different animals, spatial visualization of calculus concepts is introduced in [29]
or the alphabet is presented through an AR app in [30].

Concerning the teaching of musical concepts, a few attempts have been
proposed, basically to guide the user to play a certain tune through augmented
or completely virtual keyboards, as in [28,14,16,36]. However, to our best
knowledge, no AR application has been presented up to now to teach more
abstract musical concepts such as musical notation.

2.2 Content-based Document Image Retrieval

In parallel, document image matching techniques have made strong progress
over the past years. Those approaches enable a fast identification of a document
image (or a part of it) against a database. However, in an AR context we have
to take into account that we will face several difficulties specific to camera-
based document image processing due to device variability (resolution, sensor
quality, optical distortions) and the mobility situation (unpredictable light
conditions, perspective distortions, motion, out-of-focus blur), as reported by
the organizers of the SmartDoc competition [6,27].

A first notable work is the one of Jain et al. [17] who designed a scal-
able system for the retrieval of scanned document image which mimics text
retrieval, and adds image-specific verifications. First SURF [4] keypoints are
extracted from each images, and each descriptor is stored in a hash table to
speed-up lookup. Later, when an image is used as a query, SURF keypoints
are extracted and matched in descriptor space against closer candidates, in an
approximate nearest neighbor fashion. Then, a geometric filtering step is per-
formed to improve precision, first by considering keypoint orientations, then
by looking at all combinations of 3 matching points. While limited to scanned
documents, and somehow specific to SURF descriptors, this approach exhibits
interesting properties as is allows, at the same time, to identify a matching
document and to locate the part relevant to the query.

Moraleda and Hull [24,23] followed another approach leveraging a text
retrieval engine. Their purpose is to enable content-based image retrieval of
textual document from low resolution cellphone images (OCR is not possible
here). They associate to each word bounding box a feature vector of variable
length which is quantized and stored as a synthetic word in the text retrieval
engine. During the retrieval stage, the search engine is used to match close
neighbors while tolerating local alterations, and a geometric verification of the
relative position of the bounding boxes in retrieved documents is performed
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to improve precision. While such approach can be partly embedded and can
scale to a few thousand images, it is limited to textual documents and required
close-up captures with little to no perspective.

Nakai et al. [26] proposed a technique which is very close to fulfill our needs.
The authors enable an efficient document image retrieval scheme using camera-
captured images as queries. Thanks to an original technique (named LLAH)
for detecting and describing local arrangements of keypoints invariant to per-
spective distortion, a simple voting system enables the retrieval of documents
given a camera-captured excerpt of the original document. The improvements
proposed by Takeda et al. [33] unlocked the scaling of their method to millions
of images as well as locating precisely the part of the original document images
contained in the query (using the RANSAC [13] to find a geometric consen-
sus) for estimating the perspective transform. The authors even experimented
some AR techniques [34] on a smartphone to superimpose information on the
document aimed at. However, this approach has two main drawbacks which
prevent using it for our project which aims at retrieving graphical documents
without any external dependency: first, the local descriptor used is specific to
text documents, and cannot cope with documents which are mostly graphical
and contain very little text; and second, the system architecture used relies
on a network connexion to query a distant computer in real time, in order to
cope with RAM limitations on a mobile device.

Due to their flexible matching properties, approaches based on local de-
scriptors are the most promising to face the challenges of the Augmented Song-

book project. In particular, such techniques can cope with partial occlusions,
degraded document, and difficult capture conditions: motion and out-of-focus
blur, perspective, too much or too little light, etc.

In this paper, we are particularly interested in identifying a suitable ar-
chitecture which enables the simultaneous identification and location of the
document under capture on a mobile device, and evaluating the performance
of such system under realistic conditions.

3 Mobile Document AR Using Local Descriptors

This section introduces the architecture of the mobile document AR applica-
tion. It is simple and proposes a clear definition of its processing steps, hence
enabling a precise evaluation of each of them.

The architecture used in the Augmented Songbook project forms a real-
time image processing pipeline. On the mobile device, the camera subsystem
generates a stream of video frames which must be processed as quickly as
possible in order to render smoothly the appropriate augmented content over
the scene under visualization.

Figure 2 provides a general view of the information flow between the main
components of the application:

– the Camera Module streams frames to all the other modules in real time;
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Fig. 2: Global information flow among the components of the application. Each
module runs independently of the others.

– the Frame Processing Module checks for any known document in the
scene, and eventually locate its position;

– the AR Rendering Module uses information about document model
and position to render the animation with the appropriate timing and
projection;

– the Display Module finally blends all the content (animation, widget,
original frame) in real time.

Each module runs independently of the others, enabling the Camera Module
and the Display Module to work at full speed at OS level (on mobile platform),
while allowing the Frame Processing Module and the AR Rendering Module
to process content at their own pace.

In this paper, we are interested in the Frame Processing Module, though
we will briefly describe the AR Rendering Module, which is very rudimentary
in our case.

3.1 Data Flow at Run Time

Data processing and flow within the AR architecture is illustrated in Figure 2.
It presents the main actions and objects at an abstract level. It also shows
that the workload can be distributed across several independent threads. As
mentioned previously, such distribution permits to provide the user with a
real-time display even if Frame Processing and AR Rendering are too slow
to process every frame acquired by the camera. We detail here the building
blocks of the architecture, and will describe how they collaborate in real time
in section 3.2.

At the operating system level, the following actions are performed.

– Read Frames to produce a continuous stream of images and their times-
tamps.

– Display the AR Scene to the user, blending animated content, original
scene and various widgets.
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Fig. 3: Data flow at run time. Control flow is removed for clarity. Actions
are represented by rounded rectangles, and objects by squared ones. This
illustration completes the one in Figure 2 by detailing the content of the Frame
Processing Module and showing explicitly the distribution of actions across
threads.

The core of the architecture is the frame processing comprised of the
following actions run sequentially.

– Extract Keypoints from frame images. This consists both in detecting
salient and robust points or regions, and computing a descriptor to char-
acterize the related local area of the image. Such descriptors must be as
robust as possible to the common distortions encountered during mobile
document capture: perspective distortion, illumination variations, out-of-
focus blur and motion blur, in particular. The Keypoints object is there-
fore a set of structures containing coordinates, a description vector, as well
as a few extra elements related to the implementation.

– We then Identify the Document Model using a) the set of keypoints
extracted from the current frame; and b) the set of all keypoints extracted
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from every document model image (named here “Models Keypoints”,
which stores for each keypoint the id of the associated document model).
The decision process leading to the selection of a single document model
will be detailed in Section 4.2.

– Finally, we Estimate the Perspective Transform making use of the
correspondences between: a) the set of keypoints extracted from the cur-
rent frame; and b) the subset of Models Keypoints which correspond to
the model which was identified. It consists in recovering the transforma-
tion matrix describing the perspective under which the document model
is viewed. It also serves as a geometric validation stage of the previously
matched document model, rejecting inconsistent solutions.

The identification of the document model is performed only when no docu-
ment model has been found yet, or when the perspective transform estimation
fails for a given number of frames, indicating that the document in the scene
may have changed. Conversely, there is no need for a specific model identifi-
cation as long as the perspective model estimation succeeds (indicating that
the document model is still valid for the current frame).

AR Rendering, finally, can be reduced to a single action for the purpose
of our presentation: Render the AR Scene. This action consists in superim-
posing the appropriate animation for the current model, using the perspective
transform previously found, on the current frame. It uses a bank of anima-
tions (Animations) which contains images, sounds, and other elements for
each document model. The main challenge of this step is to maintain a smooth
animation display with a high frame rate while:

1. frame processing introduces a sensible delay between the moment when a
frame is read, and the moment when the perspective transform is available;

2. occasional failures in document model identification or perspective trans-
form estimation create gaps in the availability of the perspective transform.

To cope with those issues, the rendering has to keep track of the last valid
model id and perspective transform in order to avoid flickering effect (inter-
mittent display of augmented content). Furthermore, it is possible to improve
the quality of the rendering by interpolating the perspective transform us-
ing the frame timestamps and a fast motion estimation technique, like optical
flow [21] for instance. As such technique introduces an extra computing cost, it
can have a negative impact on some configuration; and would therefore deserve
a dedicated study.

3.2 Control Flow at Run Time

As frames have to be processed as quickly as possible, the frame processing
and the AR rendering perform a minimal amount of work at each cycle, as
illustrated in figure 4.
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a) b)

Fig. 4: Activity diagrams of a) frame processing and b) AR rendering.

For Frame Processing, keypoint extraction, document model identifica-
tion and perspective transform estimation are performed sequentially. How-
ever, document model identification is performed only when no document
model is already available. The reference to the document model is kept as
long as the geometrical validation of the perspective transform estimation suc-
ceeds. If the perspective transform estimation fails for a sufficient number of
times, then the document model is invalidated as it may indicate that the user
is now aiming at a different document, and document model identification will
be run on the next iteration.

AR Rendering, on the other hand, only renders the animation when a
perspective transform is available. Like for document model identification, the
last valid perspective transform is stored and applied to later frames until a
new transform is found, or until the estimation failed for a sufficient number
of times.

The clear distinction between document model identification and perspec-
tive transform estimation permits to reduce significantly the amount of time
required to process a frame as soon as a model is found and validated. Key-
point extraction is however a required operation for each new frame to process.
Figure 5 illustrates the benefit of such separation on a sample session: as soon
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as the document model is found and validated, perspective transforms are
computed much faster, enabling a smoother AR rendering.

4 Implementation of the Frame Processing Module

We now focus on the three main processes involved in the core of the archi-
tecture; the frame processing. Keypoint extraction (section 4.1) is the funda-
mental process which consists in producing a set of local descriptors for each
video frame. This set is latter matched against either i) the full database of lo-
cal descriptors (“Models Keypoints”) previously extracted from all document
models (during Document Model Identification, Section 4.2) or ii) a subset of
this database of local descriptors (during Perspective Transform Estimation,
Section 4.3).

This global process is very robust against occlusions or partial detections,
due to missing or invisible parts of the document, because of the nature of
the set comparison techniques used to match the set of keypoints extracted
from each frame against the set of keypoints previously extracted from model
images.

4.1 Keypoints Extraction

The keypoint extraction process is based on two distinct stages:

1. a detection stage which identifies interest points or regions which exhibit
saliency properties and should be stable under multiple viewing conditions:
perspective, illumination, motion, and focus in particular;

2. a description stage which encodes visual information (texture, gradients,
colors, etc.) about the neighborhood of the interest element with a trans-
form function which is invariant to several of the previously mentioned
distortions.

We considered four methods for keypoint detection and description for our
analysis.

– SIFT: Keypoint detector proposed by D. Lowe in [20] in which keypoints
are extracted as maxima of the Difference of Gaussians over a scale space
analysis at different octaves of the image. Dominant orientations are as-
signed to localized keypoints. The descriptor coarsely describes edges ap-
pearing in keypoint frames by an orientation histogram over the gradient
image.

– SURF: Keypoint detector proposed by H. Bay et al. in [4] which detects
blobs based on the determinant of the Hessian matrix. The descriptor is
based on the computation of Haar wavelet responses in a dense fashion
within the keypoint frames.

– ORB: Keypoint detector proposed by E. Rublee et al. in [31] which uses an
orientation-based implementation of the FAST corner detection algorithm.
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Fig. 5: Timing diagram of a sample AR session. At the beginning, no docu-
ment is visible in the frame and document model identification fails. Starting
from the fourth frame, a document in visible in each frame. This enables the
document model identification, and subsequently the perspective transform
estimation, to succeed. Once document model identification is confirmed by
the geometrical validation of the perspective transform estimation, there is
no need to check for a new document model unless perspective transform es-
timation fails for a sufficient number times. As soon as a valid perspective
transform is available, the AR rendering becomes active.
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The binary descriptor is a rotation aware version of the BRIEF descrip-
tor [7]. It basically encodes the intensity differences among a set of pairs
of pixels.

– BRISK: Keypoint detector by proposed by S. Leutenegger et al. in [19]
which analyses the scale space using a saliency criterion. The binary de-
scriptor is also based on a pair-wise comparison of pixel intensities as in
ORB.

It is worth noting that both SIFT and SURF yield an integer-valued his-
togram while ORB and BRISK produce binary strings. Such binary descriptors
are matched against each other with a Hamming distance which entails a much
faster distance computation than the Euclidean distance calculation done for
SIFT and SURF descriptors. ORB and BRISK being binary descriptors they
are more suitable for a real-time applications in mobile devices since they of-
fer matching speeds that can yield several orders of magnitude in speed when
compared with integer-valued descriptors. In this paper we analyze their per-
formances in order to assess the performance loss in terms of accuracy when
using such compact descriptors.

4.2 Document Model Identification

We followed a standard architecture for document matching with local descrip-
tors [9,32]. Given a set of model documents D = {d1, d2, ..., dM} to index, we
compute local detectors to end up with N keypoints K = {k1, k2, ..., kN} for
each model document from D. Given the different detectors we tested, the
keypoints from K are to some extent invariant to rotation, scale, illumination
and perspective changes. Each keypoint ki is then described by a feature de-
scriptor fi from one of the previously presented descriptors. Such descriptors
are then indexed in an inverted file efficiently implemented with the FLANN
architecture [25], which either uses KD-trees for integer descriptors (like SIFT
and SURF) or LSH [1] for binary descriptors (like BRISK and ORB). Each
entry of the model database is composed of keypoint information: coordinates,
local descriptor value and original model identifier.

For any incoming frame from the mobile device camera, keypoints and lo-
cal descriptors are extracted and computed, and matched against the inverted
file. In order to produce reliable matches, we use the ratio-test proposed by
Lowe [20], according to which a match is considered to be correct if the ratio
between the distance to the nearest and to the second nearest local descrip-
tors is above a certain threshold. An extra level of control would be possible
by considering reverse matches between descriptors from either the complete
database or only the selected document model and descriptors from the current
frame, but our experience showed that this tends to filter too many candidates,
sometimes even degrading the final decision while adding a significant com-
putational cost. The model selected as appearing on the frame is the one for
which more local descriptors have been matched without ambiguity. For effi-
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ciency reasons, this architecture does not allow for more than one document
model to be matched.

4.3 Perspective Transform Estimation

Perspective transform estimation is performed during a second keypoint match-
ing stage. Once the document model is known, it is possible to reconsider all
the local descriptors extracted from the frame and match them against the ones
from the same model in the model database. A ratio test is also performed
at this stage to filter ambiguous matches. From a set of putative matches be-
tween keypoints of the selected document model and of the current frame, a
RANSAC [13] step is performed in order to filter out the outlier matches that
to not agree geometrically and to find the homography between the recog-
nized model document and its instance appearing in the scene. We found that
a minimum of 15 inliers was required to obtain stable results.

This stage confirms the validity of the document model which was identified
at the previous stage, and provides the AR rendering module with a transfor-
mation matrix which allows to project the augmented synthetic content over
the physical document in the current frame.

We separate this stage from document model identification as much as
possible, in the sense where we take all keypoints from the matched document
model and match them against all the keypoints of the frame. This solution
is slower (as it requires a second approximate nearest neighbor search, even if
restricted to a subset of the model database) but provides better results when
compared to solutions which estimate the perspective transform directly on
keypoints correspondences obtained from the document model identification
stage. As previously mentioned, this separation is the key to a clear evaluation
of this architecture.

5 Public Dataset for Performance Evaluation

This section first describes the content of the test database we created for this
project1, and then details the ground-truth creation process.

5.1 Database contents

In order to create our dataset, we built fifteen children musical sheet pages
taking as a basis the score sheets published in an official monograph from the
education department of the Goverment of Catalonia 2. Our sheets contain
the title of the song, the music score, the lyrics of the song as well as some

1 http://www.cvc.uab.cat/songbook/
2 http://ensenyament.gencat.cat/ca/departament/publicacions/monografies/

cancons-populars
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simple drawings depicting the main content of the song. We show an example
of each page in Figure 6.

Each of those document models were printed using a laser-jet printer
and we proceeded to capture them using a Google Nexus 5 smartphone. We
recorded small video clips of around 20 seconds for each of the fifteen doc-
uments in three different acquisition conditions presenting severe perspective
distortion, low contrast between background and musical sheet, motion and
out-of-focus blur, etc. The videos were recorded using Full HD 1920x1080 res-
olution at variable frame-rate. Since we captured the videos by hand-holding
and moving the smartphone, the video frames present realistic distortions such
as focus and motion blur, perspective and change of illumination. In addition
of the video clips, we also captured an 8Mp picture of each of the documents
to be used as models for the matching process. We present an example of the
different scenarios in Figure 7. Summarizing, the database consists of 45 video
clips (of 18.7 seconds on average) comprising 21 048 frames.

For each frame of the dataset, one and only one instance of a document is
fully visible: no corner or side is “cut”, and the coordinates of each of the 4
corners of the page in the frame referential are stored in the ground truth.

5.2 Semi-automatic groundtruthing

To evaluate the ability of the proposed approach to locate and accurately
segment the document pages in video feeds, we need a segmentation ground-
truth of our collection consisting in having a quadrilateral defined by the four
corners of the paper sheets appearing in the video frames. However, manu-
ally annotating such amount of frames, is a tedious and error-prone task. We
have used the semi-automatic ground-truthing approach previously presented
in [10]. We start with the assumption that the documents lie on a flat surface
and do not move from it. We surround the physical document with four color
markers that will be easily segmented. The ground-truth quadrilateral is in-
ferred through computing the transformation that holds between the markers
and the paper sheet. Such approach involves a reduced human intervention.

The proposed semi-automatic approach works as follows. First color mark-
ers shown in Figure 8a) have to be segmented. Given a video with n frames
F0, ..., Fi, ..., Fn−1, we show the first frame F0 to the user that has to click on
the four markers. The RGB color values in those positions with a range toler-
ance are used as thresholds to segment the markers, as shown in Figure 8b).
Such RBG values are update iteratively for each frame to tackle illumination
changes across the whole video, i.e. the RGB value of each of the markers
centroid at the ith frame is used to segment the i+ 1th frame.

BeingMi the polygon defined by the marker centroidsMi = {Ai, Bi, Ci, Di}
and Pi the quadrilateral defined by the four page corners Pi = {Wi, Xi, Yi, Zi}
for the ith frame (Figure 9), we define a reference coordinate system by four
points M ′ = {A′, B′, C ′, D′} in order to compute for each frame a perspective
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01 “sol” 02 “lluna” 03 “plou”

04 “cargol” 05 “pedra” 06 “gegant”

07 “jan” 08 “olles” 09 “quinze”

10 “sardana” 11 “tres” 12 “gallina”

13 “cotxe” 14 “carrer” 15 “bondia”

Fig. 6: Sample documents used in our dataset.

transform [15] Hi that converts the point set Mi to M ′ using

M ′ = HiMi.

H0 is computed for the first frame of the video and we present the warped
image F ′

0
to the user. He then selects the four corners P ′ = {W ′, X ′, Y ′, Z ′}
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Scenario 01 Scenario 02 Scenario 03

Fig. 7: Example of the different acquisition scenarios.

a) b)

c) d)

Fig. 8: Overview of the semi-automatic groundtruthing approach. a) Original
image. b) Color marker segmentation. c) Warped frame shown to the user
to mark the four document corners. d) Quadrilateral output and inpainted
markers.

(Figure 8c). Backwards projecting the points from P ′ using the inverse per-
spective transform H−1

i
,

Pi = H−1

i
P ′,

is used to find the corners of the page Pi at any frame i.
With this approach, we annotated the whole dataset by needing eight clicks

from the user per video.
Finally, the marker segmentation mask is used in order to “erase” the

markers from each frame using an inpainting technique. This step is optional
and is just used to provide markerless and aesthetical video frames. We have
used the approach by Telea [35]. We can see the page segmentation and the
marker inpainting results in Figure 8d).

A final manual revision of the ground-truth polygons was conducted. In-
specting the ground-truth we found that for a few clips for which color marker
segmentation failed, a manual correction was necessary and introduced an ex-
tra edition cost. This was detected thanks to a frame by frame inspection of
the final video clips (after inpainting). The averaged total time needed to gen-
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A′ B′

C′ D′

(0, 840)

(0, 0) (700, 0)

(700, 840)

W ′

Y ′

X′

Z′

Hi

H−1

i

F ′

Fi

Ai Bi

Ci Di

Wi

Yi

Xi

Zi

Fig. 9: Markers-to-corners approach. Marker centroids {Ai, Bi, Ci, Di} are
detected and Hi mapping those points to know coordinates {A′, B′, C ′, D′}
is computed. The page corners {W ′, X ′, Y ′, Z ′} within this referential F ′

are stable. The inverse transformation using H−1

i
gives the real coordinates

{Wi, Xi, Yi, Zi} of the corners. (Image reprinted from [10]).

erate the ground truth for a given video clip and its inpainted counterpart is
6 minutes. This includes the capture, the automated processing time, and the
manual inspection and correction of all frames to ensure a precise result. This
makes our approach very competitive to generate realistic datasets with little
constraints.

6 Benchmark of Local Detectors and Descriptors

In this section we will evaluate the performance of the different local descrip-
tors both for the document model identification and for the perspective trans-
form estimation tasks.

We will first start this section by providing some practical details about
each local descriptor method used in the benchmark. Then, for each task we
will present the evaluation metrics and evaluation protocol to end up present-
ing and discussing the results.

6.1 Local Descriptors Analysis

The results presented in the rest of this section should be interpreted while
keeping in mind the actual amount of local descriptor used to perform each
task, and the real memory impact of each method. Table 1 summarizes the
memory occupation required to store a single descriptor with each of the tech-
niques we studied. Table 2 indicates the average amount of keypoints extracted
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Table 1: Comparison of memory occupation for storing a descriptor.

Bits per Number of Total descriptor
dimension dimensions size (bytes)

Method

BRISK 8 64 64
ORB 8 32 32
SIFT 32 128 512
SURF 32 64 256

Table 2: Comparison of actual number of descriptors used and associated mem-
ory occupation at runtime.

Keypoints count Memory usage (in KiB)

per model per frame for all 15 models per frame total
Method

BRISK 369 492 346 31 377
ORB 1,020 1,010 478 32 510
SIFT 935 1,570 7,013 785 7,798
SURF 522 855 1,958 214 2,171

either from each model, or from each video frame to be processed. It also pro-
vides a rough estimation (not including indexation structure) of the average
memory occupation required to store model and frame descriptors at run time.
It is worth mentioning here that the model image size is slightly smaller than
the one of the video frames to improve the matching (because actual docu-
ments rarely cover the whole video frames in the test set).

As we can see, ORB and BRISK exhibit much lower memory impact at run
time. Another interesting point to mention is that there are important varia-
tions in the number of keypoints extracted by each methods, ORB and SIFT
producing more elements to match. This obviously has an important impact
on both the quality of the results and the actual processing speed. Regarding
ORB and BRISK, the two methods which appear as the most suitable for
an embedded solution, we can ask ourselves whether ORB (which produced a
target number of keypoints) supports are representative enough for matching
frame and model content, and BRISK lacks some of them, or on the contrary
if ORB introduces noise and BRISK is well-focused on the essential supports.
As we will see in the following of this paper, the results are clearly in favor of
using ORB in favor of BRISK for the task we defined.

6.2 Document model identification

The document model identification task is defined as the process of associating
to a given frame from the test set the appropriate document model identifier,
given a database of keypoints for all document models.
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We considered each frame as an independent event, in the sense where
we did not implement a solution which made use of the label associated to
previous frames in a stream, in order to compare the impact of the choice
of local detectors and descriptors, and not regularization techniques (which
should be studied separately). However the evaluation model is compatible
with more elaborate modules which would take past history into account.

6.2.1 Metrics

Formally, each process will be evaluated according to 2 metrics:

1. on its accuracy on the identification task consisting in association to a
random frame the appropriate document model identifier among the fifteen
possible ones in the dataset;

2. on its average frame processing time.

The identification accuracy is defined as the number of frames correctly
labeled, normalized by the total number of frames.

6.2.2 Protocol

This experiment compares the metrics obtained for each pair of local detec-
tors and descriptors presented in Section 4.1. The experiments were run on
a desktop machine (as opposed to mobile devices) for practical reasons. This
has no impact on the accuracy metric, but the average frame processing time
can be reduced, therefore this last metric should be interpreted relatively.

6.2.3 Results and discussion

We report in Table 3 the obtained identification accuracies and the required
processing times for all the local keypoint detectors and descriptors. Even if
SIFT outperforms the rest of local descriptors in terms of identification accu-
racy, it is worth noting that it is the most computing demanding one. ORB
achieves comparable identification results while being much faster. We expe-
rience a slight drop in performance when using SURF, while BRISK performs
poorly on this task despite being the fastest method. The speed difference be-
tween using BRISK or ORB is explained by the different amount of keypoints
that are extracted from each frame and each model, that we presented in Ta-
ble 2. From these results we conclude that for a real-time application ORB
would be the preferred choice for its speed and identification accuracy.

We report in Tables 4 and 5 the averaged identification accuracies for the
different acquisition scenarios and document types respectively. On the one
hand we can see that for both SIFT and ORB, the second scenario is the
one that causes more failures, since it is the scenario with the most difficult
acquisition conditions (perspective, blur and low contrast). On the other hand,
by looking at the different document types, we can see the strong variance for
BRISK: for some documents (e.g. “10 sardana”, “12 gallina” or “15 bondia”) it
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Table 3: Performance summary on the identification (document model identi-
fication) task.

Accuracy Average FPS Average time
(%) per frame (s)

Method

BRISK 87.3 19.6 0.051
ORB 99.5 4.1 0.241
SIFT 99.9 0.4 2.669
SURF 94.7 0.9 1.083

Table 4: Document identification accuracy per acquisition scenarios.

BRISK ORB SIFT SURF
Scenario

01 79.9 99.9 100.0 92.2
02 90.5 99.0 99.7 98.8
03 91.5 99.6 99.9 93.2

All 87.3 99.5 99.9 94.7

Table 5: Document identification accuracy per document.

BRISK ORB SIFT SURF
Document

01 sol 98.8 99.5 100.0 99.9
02 lluna 57.6 100.0 99.8 72.8
03 plou 84.9 99.2 99.6 99.6
04 cargol 93.4 99.6 99.9 100.0
05 pedra 59.7 100.0 100.0 100.0
06 gegant 87.9 99.1 100.0 100.0
07 jan 100.0 100.0 100.0 100.0
08 olles 90.4 98.2 100.0 98.3
09 quinze 69.9 100.0 99.6 50.3
10 sardana 99.2 99.5 100.0 100.0
11 tres 99.1 100.0 100.0 100.0
12 gallina 99.1 99.3 100.0 100.0
13 cotxe 76.9 99.8 99.9 100.0
14 carrer 93.8 99.4 99.5 99.7
15 bondia 99.3 99.4 100.0 100.0

All 87.3 99.5 99.9 94.7

performs quite similarly to ORB, while for some others its performance drops
dramatically (e.g. “02 lluna”). The same applies between SIFT and SURF,
which perform poorly on a couple of documents. Again, there are no significant
differences between SIFT and ORB, but SIFT steadily delivers slightly better
accuracies.
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Fig. 10: To ensure that expected (G) and result (S) surfaces are comparable
among frames, surface comparisons are performed within the referential of
the document, leading to new quadrilaterals G′ and S′ after dewarping the
coordinated using the homography H associated to the current frame F , as
described in Figure 9.

6.3 Perspective transform estimation

The perspective transform estimation task consists in finding the best possible
perspective transform, given a document model image and a video frame,
which will project the synthetic augmented content on the physical document
with as little overlapping error as possible.

Here we start from the already known document model, in order to avoid
any bias from this prior step.

6.3.1 Metrics

As for document model identification, we consider two metrics:

1. perspective estimation quality;
2. average frame processing time.

To evaluate perspective estimation quality, we used the Jaccard index mea-
sure [12] that summarizes the ability of the different methods at correctly seg-
menting page outlines while also incorporating penalties for methods that do
not detect the presence of a document object in some frames. Here we add a
preliminary step to project (“dewarp”) point coordinates into the document
referential, so as to be able to compare values obtained for different frames.

The evaluation procedure works as follows. Using the document size and
its coordinates in each frame as stored in the ground truth, we start by trans-
forming the coordinates of the result quadrilateral S and of the ground-truth
G to undo the perspective transform and obtain the corrected quadrilaterals
S′ and G′, as illustrated in Figure 10. Such transform makes all the evalua-
tion measures comparable within the document referential, or, said differently,
it projects the expected and detected frame regions into a space where each
pixel accounts for the same physical surface. For each frame F , we compute the
Jaccard index (JI) that measures the goodness of overlapping of the corrected
quadrilaterals as follows:

JI(F ) =
area(G′ ∩ S′)

area(G′ ∪ S′)
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Table 6: Performance summary on the perspective transform estimation task.

Mean Jaccard Average FPS Average time
Index (%) per frame (s)

Method

BRISK 77.7± 0.54 13.5 0.074
ORB 98.4± 0.09 9.6 0.104
SIFT 98.8± 0.06 0.6 1.741
SURF 97.5± 0.11 1.1 0.886

where G′ ∩S′ defines the polygon resulting as the intersection of the detected
and ground-truth document quadrilaterals and G′ ∪ S′ the polygon of their
union. As the dataset contains only clips where every frame represents one
(and only one) of the documents, the case where G′ ∪ S′ = ∅ never occurs,
thus ensuring the metric is always defined in the experiments we conducted.

Finally, the overall score for each method will be the average of the frame
score, for all the frames in the test dataset.

6.3.2 Protocol

This experiment compares the metrics obtained for each local descriptor pre-
sented in Section 4.1: BRISK, ORB, SIFT and SURF. As for the previous
experiment, this experiment was run on a desktop machine so the average
frame processing time should be interpreted relatively.

6.3.3 Results and discussion

We report in Table 6 the quality of perspective transform estimation and
the associated average frame processing time for each local descriptor. While
SIFT outperforms other methods from a quality perspective, ORB achieves
comparable results with a fraction of the computing power required: processing
a frame with ORB is more than 16 times faster, while using 16 times less
memory to store the same amount of descriptors. SURF performs just a little
less well that ORB and SIFT, but at the price of an important processing
time, making it less attractive than ORB. BRISK, finally, is very fast, but
leads to poor results and is unusable for this task.

During our tests, we realized that methods for which the Jaccard index
drops below 95% do not perform well enough for the document augmentation
task, as the detected region misses too much information from the document
and has a visible overlapping difference for the user. This lets us with only two
viable options, SIFT and ORB, out of the four methods we considered. SIFT
should be preferred when computational power is not a concern and quality
is of prime interest. ORB should be preferred for mobile applications when
real-time image processing is performed on the device. Figure 11 provides a
more detailed view of the actual distribution of the values of the metric.
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Fig. 11: Boxplot visualization of the distribution of Jaccard index values (in
percentages) for each method over all test frames, truncated at 90%.

Table 7: Quality of the perspective transform estimation detailed by acquisi-
tion scenario.

BRISK ORB SIFT SURF
Scenario

01 71.9 98.9 99.1 98.3
02 79.8 97.7 98.3 96.4
03 81.4 98.6 98.9 97.9

All 77.7 98.4 98.8 97.5

Finally, the comparison of the performance of each method against ac-
quisition scenarios and documents of the dataset can reveal some additional
information. Table 7 details the results for perspective transform estimation for
each acquisition scenarios. The second scenario tends to contain more blurry
frames, due to a pale background and a lower ambient light which are more
challenging for the autofocus. It also contains frames with more perspective
distortion. With the exception of BRISK, the methods seem to be more im-
pacted by such factors. It is interesting to note that the overall ranking remains
the same when capture conditions change: SIFT performs slightly better than
ORB, SURF then performs reasonably before BRISK for which performance is
too low. Table 8 details the results for each document of the dataset. Some doc-
uments, like “09 quinze” contain little texture information and are challenging
for all methods. Depending on documents, and maybe also on acquisition sam-
ples, the order between SIFT and ORB can be switched, and also sometimes
between ORB and SURF. SIFT however always performs better than SURF.
BRISK, on its side, constantly performs worse despite its great variance: it
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Table 8: Quality of the perspective transform estimation detailed by document.

BRISK ORB SIFT SURF
Document

01 sol 83.8 98.1 98.6 97.8
02 lluna 60.8 98.7 98.4 96.3
03 plou 75.3 97.7 98.4 96.5
04 cargol 88.5 98.5 98.8 98.6
05 pedra 41.7 98.9 98.6 98.0
06 gegant 86.3 98.4 99.2 98.1
07 jan 92.4 98.8 98.9 98.4
08 olles 82.4 97.0 98.8 94.3
09 quinze 20.8 98.6 98.5 95.9
10 sardana 97.0 98.8 99.1 98.7
11 tres 86.6 99.0 99.2 98.3
12 gallina 91.7 98.1 98.8 98.3
13 cotxe 75.6 98.9 99.2 98.4
14 carrer 87.9 97.7 98.0 96.4
15 bondia 96.2 98.8 99.2 98.8

All 77.7 98.4 98.8 97.5

can provide decent results for some documents like “10 sardana”, with 97.0%
average JI, and unusable ones for documents likes “09 quinze”, with 20.8%
average JI.

To conclude, SIFT is a clear winner, but ORB is the method of choice for
mobile applications, with a small quality loss. However, under more challenging
conditions like low light, motion and defocus blur, or occlusions, the game may
change and this ranking could be more severe. In our experience, we observed
that SIFT can handle difficult cases where ORB performance drops, before
giving up on its turn.

7 Application Details and Implementations

We built a prototype of the application in Java using the OpenCV’s wrapper
for Android. The app automatically detects the music score we are pointing
at from a reduced dataset of three indexed scores. At this stage, the black
and white drawings from the music score documents are augmented with a
colorized version. The user can select either to use a piano, a violin, a flute
or a saxophone as playing instrument and a virtual keyboard appears. The
user is then guided to play the song by marking both the key to play from the
keyboard and the corresponding note from the staff. Once the correct key has
been played, the next key and note is displayed. This aims thus at acquiring
abstract musical concepts by a manipulative and interactive application. We
can see an example of our prototype in Figures 1 and 12. A couple of videos
of the usage of the app can be seen in the website of this project.
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Fig. 12: An example of usage of the developed AR prototype.

The processing thread in the current non-optimized version3 of the pro-
totype runs at 7 fps in a Google Nexus 7 tablet. Such latency might not be
enough for a pleasant use, since the users will experiment a lag. However,
by having two separate threads, one for processing, and one for the camera
grabbing and display modules, as explained in Section 3, provides the user an
enjoyable experience with a 23 fps feedback sensation.

It would be very interesing to really assess and evaluate how such new
learning applications are perceived by the users and if they actually contribute
in raising awareness of the musical notation to young children, and to ease the
learning of abstract concepts. Although we have tested its use with several
kids aged around 6 years old, receiving positive reactions, we have not yet
conducted such in-depth evaluation.

Finally, we have a permanent installation of the system in the Volpalleres
Library Living Lab in the town of Sant Cugat, Spain, for the general public
to test it [18].

8 Conclusions

In this paper we described the architecture and the internals of a mobile educa-
tive application devoted to raise awareness of the musical notation to young
children. The application allows the superimposition of augmented contents
over pages of a predefined songbook in real time, without specific markers,
and with all the processing done on the mobile device.

We have benchmarked the performance of local detector and descriptor
methodologies for the tasks of document model identification and perspective

3 Just avoiding the OpenCV’s Java wrapper and program it in C will already entail an
important speedup.
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(a)

(b)

(c)

Fig. 13: my caption. (a) is .... (b) is .... (c) is ....

transform estimation. This benchmark provides a baseline for the particular
use case of augmented documents on mobile devices. In order to conduct those
experiments, we introduced an original and public dataset precisely ground-
truthed consisting of a total of 21 048 frames. Results show that the perfor-
mance yielded by the ORB feature descriptor is comparable with the more
computationally demanding SIFT descriptor.

The mobile prototype is able to run the display in real time, with an
adjustment of the augmented content position at a rate of 7 fps, thanks to a
separation of the document matching process and the AR rendering process.
We tested the prototype in real environments under different setups and with
several parents and their children, obtaining a positive reactions.
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Ogier, J., Prum, S., Rusiñol, M.: ICDAR2015 competition on smartphone document
capture and OCR (smartdoc). In: Proceedings of the 13th International Conference on
Document Analysis and Recognition, pp. 1161–1165 (2015)

7. Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., Fua, P.: BRIEF:
Computing a local binary descriptor very fast. IEEE Transactions on Pattern Analysis
and Machine Intelligence 34(7), 1281–1298 (2012)
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