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Abstract
This paper introduces PL-PRS-BVA-KISSAT, a parallel SAT solver submitted to the Parallel SAT Competition
2024. PL-PRS-BVA-KISSAT is built using the Painless framework [1] and employs a Portfolio parallelization
strategy. It utilizes Kissat-MAB CDCL solvers as its core engines [2] and integrates the HordeSat [3] sharing
technique. Furthermore, it incorporates state-of-the-art preprocessing methods, specifically Bounded Variable
Addition (BVA) [4] and the preprocessing technique implemented by PRS [5].
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1. Introduction

For several years, Painless [1] has established itself as a crucial tool for developing efficient parallel SAT
solvers. This is due to its modular, generic, and flexible architecture, along with continuous engineering
efforts to maintain and evolve the tool.

In this paper, we present PL-PRS-BVA-KISSAT, a SAT solver submitted to the Parallel SAT Compe-
tition 2024, built using Painless. PL-PRS-BVA-KISSAT implements a Portfolio parallelization strategy,
utilizing Kissat-MAB CDCL solvers as core engines [2] and the HordeSat [3] sharing technique. Com-
pared to solvers submitted by the authors in previous competitions, the main innovation here is the
fine integration of state-of-the-art pre-processing techniques, specifically Bounded Variable Addition
(BVA) [4].

While BVA technique has been successfully used in sequential contexts, its application in a parallel
setting is challenging due to soundness issues [6]. We propose a method to leverage BVA in a way that
maintains soundness while improving the efficiency of a parallel SAT solver.

This paper begins by introducing Painless and BVA in Section 2. In Section 3, we provide a detailed
description of our portfolio solver, PL-PRS-BVA-KISSAT. The experimental evaluations are presented
in Section 4. Finally, the paper concludes with suggestions for future work in Section 5.

2. Preliminaries

As our proposed solver leverages both Painless and the BVA technique, the following sections provide
an in-depth presentation of each concept.

2.1. Painless framework

The Parallel Instantiable SAT Solver, known as Painless [1], is a framework designed for creating parallel
SAT solvers in multi-core environments. The adaptability and effectiveness of Painless are due to its
straightforward architecture, which allows for the seamless implementation and execution of various
parallel-solving strategies, including the Portfolio parallelization strategy. This makes Painless a
significant tool in the field of parallel SAT solving.
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Figure 1: Original Architecture of Painless

The architecture of Painless is illustrated in Figure 1. The base classes that need to be implemented
are shown in dotted boxes, while the instantiable ones are in background-colored boxes. Two main
relationships can link these different classes: inheritance and aggregation.

Inheritance is a straightforward extension of a class, allowing derived classes to inherit attributes
and methods from a base class, thus promoting code reuse and hierarchical organization. Aggregation
represents the use of another class within a given one that needs it to be meaningful, indicating a
"has-a" relationship. This means the aggregated class is crucial for the operation of the whole but can
still exist independently.

For example, implementations of the SharingStrategy and SolverInterface interfaces can be
instantiated independently of the Sharer. However, the Sharer cannot achieve any functional purpose
without its components, illustrating a dependency. Conversely, a SequentialWorker gains meaning
through its aggregation with a SolverInterface.

Starting from the left, the WorkingStrategy interface encapsulates the behavior of parallelization
strategies. This strategy can designate a master that oversees several SequentialWorker threads.
These threads collaborate according to a specific strategy set by the master, allowing for efficient parallel
processing.

The SequentialWorkers interact with sequential solvers through the SolverInterface, which
provides all necessary methods for the SequentialWorker to control the solving process. This interface
also enables the SharingStrategy to manage clause sharing among sets of producer and consumer
workers, optimizing resource utilization and performance. The Sharer handles the thread responsible
for executing the chosen SharingStrategy, ensuring that the sharing process is carried out effectively.
Thus, the Sharer acts as a crucial component in the system, facilitating the coordination and sharing of
data between different threads and strategies.

In summary, the architecture of Painless is designed to leverage inheritance for extending functionality
and aggregation for integrating essential components. The interplay between these relationships allows
for a flexible and efficient system capable of parallel processing and dynamic resource management.

2.2. Bounded Variable Addition

Bounded Variable Addition (BVA) is a preprocessing technique that reduces the number of clauses
in a formula by adding new variables [7, 4]. The algorithm identifies groups of resolvents that can be
factorized by introducing a new variable. This new variable is added only if the number of resulting
clauses is fewer than the number of identified resolvents, hence the term Bounded in the technique’s
name.

Consider the set of clauses presented hereafter. We can apply the BVA algorithm to introduce a new
variable 𝑧 and reduce the number of clauses from 6 to 5.



𝑣 ∨ 𝑎 ∨ 𝑏

𝑣 ∨ ℎ ∨ 𝑡

𝑣 ∨ 𝑒

𝑤 ∨ 𝑎 ∨ 𝑏

𝑤 ∨ ℎ ∨ 𝑡

𝑤 ∨ 𝑒

𝐵𝑉 𝐴
=⇒

𝑧 ∨ 𝑎 ∨ 𝑏

𝑧 ∨ ℎ ∨ 𝑡

𝑧 ∨ 𝑒

¬𝑧 ∨ 𝑣

¬𝑧 ∨ 𝑤

3. PL-PRS-BVA-KISSAT

The version of Painless used to build PL-PRS-BVA-KISSAT is available on GitHub1. During the
development of our solver, we contributed to the Painless framework by updating its architecture before
integrating the different components we needed to derive our solver. In the following sections, we
discuss these improvements and the newly implemented components in detail.

3.1. Architecture Improvements In Painless

While the original BVA algorithm uses a queue of variables ordered by occurrence frequency, with
simple tie-breaking, the SBVA technique introduced a more sophisticated 3-Hop tie-breaking heuristic.
Building on these advancements, our submission to the 2024 International SAT Competition proposes a
novel approach: a portfolio of BVA pre-processors, each employing different variable queue orderings
and tie-break heuristics. This diverse pre-processing strategy aims to further enhance the performance
of parallel SAT solvers.
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Figure 2: The Updated Modules of Painless

3.2. The Sequential Engines

Our parallel solver employs Kissat-MAB as the CDCL sequential engine, supported by PRS’s and BVA
as preprocessors.

3.2.1. CDCL engine: Kissat-MAB

Kissat-MAB is the core engine of PL-PRS-BVA-KISSAT. The sequential engine managing this solver
is the C++ class KissatMABSolver, part of the 2023 Painless parallel competitor, Pkissat [8]. This
class has been updated with a cleaner integration with Kissat-MAB and a new diversification process.

Our new diversification makes each Kissat-MAB solver identify itself as a member of one of these
three families: UNSAT_FOCUSED, SAT_STABLE, and MIXED_SWITCH. Each family represents a different
configuration of Kissat-MAB, modifying the frequency of restarts, the use of the target phase, and the
degree of local search for rephasing or initial phasing [9]:

1https://www.github.com/S-Mazigh/painless/tree/satcomp-24

https://www.github.com/S-Mazigh/painless/tree/satcomp-24


• The UNSAT_FOCUSED solvers primarily use default options, except that stable is set to 0, and
the frequency of restarts and the use of chronological backtracking are slightly randomized.
Approximately a quarter of these solvers employ variable shuffling at initialization, as seen in
P-Kissat [8] and PRS [5].

• The SAT_STABLE family consistently uses target phasing (target=2) with less frequent restarts
and uses local search more at initialization and rephasing. About half of these solvers use CCAnr
[10] as in P-Kissat [8] and have their tier2 value reduced to 3 [11].

• The MIXED_SWITCH family employs the default Kissat-MAB configuration with an initial shuf-
fling of the variables.

3.2.2. Pre-processors

The effectiveness of Kissat-MAB, our main engine, is enhanced by integrating pre-processing tech-
niques that simplify the formula.

PRS-PRE : PRS [5], the winner of the parallel track of the SAT Competition 2023, has integrated var-
ious preprocessing techniques such as Unit Propagation, Equivalent-literal Substitution and Resolution
Checking [12]. These techniques have undeniably contributed to its significant success. Consequently,
we have decided to incorporate these approaches into our framework with minimal modifications, we
will refer to them as PRS-PRE.

BVA-based preprocessing : As previously mentioned, the BVA technique aims to simplify the
formula by reducing the number of clauses. It starts with a queue of variables arranged in a specific
order. According to the original algorithm [4], the most frequently occurring variable in the queue is
selected first. Each variable is then tested to see if there are matching variables that could reduce the
number of clauses by introducing a new variable into the formula. The queue is updated after each
new variable is introduced, which involves deleting clauses. This update includes all variables from the
removed clauses as well as the newly introduced variable.

During its execution, the BVA algorithm may encounter ties, where multiple variables lead to the same
amount of reduction when seeking a matching candidate. The heuristic used to resolve these ties plays
a crucial role in the resulting reduced formula. For instance, the success of StructuredBVA [7] is largely
due to its effective tie-breaking heuristic, which utilizes the variable incidence graph. This heuristic
counts the number of paths connecting a variable 𝑣 with one of its matches 𝑣𝑚 via an intermediate
variable 𝑣𝑖.

It is clear that the BVA technique is sensitive to the order in which variables are matched. Changing
the variable queue or using a different tie-breaking heuristic can lead the algorithm to different results.
Therefore, we decided to improve the BVA implementation [13], by equipping it with parameters that
enable the choice of variable queue sorting and tie-breaking heuristics:

• Variable queue sorting. In addition to the original queue ordering from the most frequently
occurring variable to the least frequently occurring one (denoted as 𝑂𝐷) [7, 4], we propose two
alternative orderings:

– From the least frequently occurring variable to the most frequently occurring one (denoted
as 𝑂𝐼 ).

– Randomly sorted (denoted as 𝑂𝑅).

• Tie-breaking heuristics. For tie-breaking heuristics, we retained the 3-hop heuristic (denoted
as 𝑇3𝐻 ) from StructuredBVA [7] as an option. This heuristic has demonstrated its usefulness in
certain categories of SAT problems, such as the packing k-coloring problem, pigeonhole problem,
and Petri Net concurrency. It improves solving time by reducing the formula size while preserving
its original structure, even when pre-randomized. However, according to the detailed results of
[7], classical BVA [4] offers better performance in some types of SAT formulas.
As additional tie-breaking heuristics, we implemented the following:



– Choose the most frequently occurring variable (denoted as 𝑇𝑀 ).
– Choose the least frequently occurring variable (denoted as 𝑇𝐿).
– Choose a random variable (denoted as 𝑇𝑅).

During our testing with the original implementation of the 𝑇3𝐻 heuristic [13], we observed in some
instances with high connectivity between variables an overflow in the tie-break heuristic’s calculated
value. While this overflow diminishes the heuristic’s effectiveness, it does not render it incorrect. To
address this issue, we reduced the probability of overflows by using unsigned int instead of int. In
our tests, using unsigned resolved the overflow problem. However, re-adapting the algorithm to use
long would be a safer approach, despite the significant increase in memory usage.

R-R R-3H R-L R-M I-R I-3H I-L I-M D-R D-3H D-L D-M Others
R-R - 1 0 1 23 23 23 23 70 62 71 76 95
R-3H 5 - 2 2 26 26 26 26 72 64 73 78 99
R-L 3 1 - 1 25 25 25 25 71 63 72 77 98
R-M 5 2 2 - 26 26 26 26 72 64 73 78 99
I-R 2 1 1 1 - 0 0 0 58 50 59 64 74
I-3H 2 1 1 1 0 - 0 0 58 50 59 64 74
I-L 2 1 1 1 0 0 - 0 58 50 59 64 74
I-M 2 1 1 1 0 0 0 - 58 50 59 64 74
D-R 3 1 1 1 12 12 12 12 - 0 6 8 28
D-3H 3 1 1 1 12 12 12 12 8 - 9 14 36
D-L 3 1 1 1 12 12 12 12 5 0 - 10 27
D-M 3 1 1 1 12 12 12 12 2 0 5 - 22

Others 1 1 0 1 0 0 0 0 1 0 4 6

Table 1
A comparison of all configurations was conducted on 181 instances from the SAT Competition 2023. Each cell
indicates the number of instances where the configuration in the column achieved a greater reduction than the
configuration in the row.

In our evaluation (in Section 4), we tested all 12 possible configurations using all 400 instances from
the SAT Competition 2023 benchmarks. A configuration is a couple of a queue ordering (O𝑋 ) and tie-
breaking heuristics (T𝑌 ), namely O𝑋 -T𝑌 , and denoted 𝑋-𝑌 in Table 1. In this table, each cell represents
the number of instances that the column’s configuration reduced further than the line’s configuration.
The table summarizes the results of the 181 instances where the BVA technique successfully introduced
new variables for new solvers. The bottom row indicates the number of instances in which each
column’s configuration achieves the maximum reduction on its own. The rightmost column shows the
number of instances where the given row configuration fails to produce the most reduced formula.

From Table 1, we confirm that the queue ordering 𝑂𝐷 remains the most effective option. It permits
the BVA technique to achieve maximum reduction the most. Applying different tie-breaking heuristics
with 𝑂𝐷 can result in varying reduction rates. Notably, the 𝑂𝐷-𝑇𝑀 configuration stands out as the
most promising in terms of size reduction.

Even though at first glance we would judge the 𝑂𝐼 and 𝑂𝑅 alternatives as meaningless, we cannot
ignore them since they achieve maximum reduction where their 𝑂𝐷 counterparts don’t. For example,
despite the generally negative impact of randomizing the queue on the BVA algorithm, the configurations
𝑂𝑅-𝑇𝑅, 𝑂𝑅-𝑇3𝐻 , and 𝑂𝑅-𝑇𝑀 achieve a maximum reduction that the other combinations cannot match.

Our objective is to seek all the possible maximum reduction rates, and the 11 configurations distinct
from the state-of-the-art (𝑂𝐷-𝑇3𝐻 ) enable us to achieve further reductions in 36 instances, which
constitutes 20% of the total 181 instances. It is evident that no single configuration can achieve the
maximum reduction across all instances.



3.3. The Sharing Strategy

The sharing strategy among the underlying solvers (Kissat-MAB) is inspired by the approaches used
in [3] and [14], namely, HordeSat: a set of producers and a set of consumers are registered into the
local strategy. Then, every 0.1 seconds, the strategy selects clauses2 from each producer, filters them
by their LBD value [15] and finally provides them for its consumers. Initially, the threshold is set to
LBD = 2. If our local strategy finds that a specific solver is sharing too few or too many clauses, it
adjusts the threshold accordingly.

3.4. The Working Strategy

The parallel solver PL-PRS-BVA-KISSAT is a portfolio of the previously discussed sequential engines
with HordeSat as its sharing strategy. The global architecture of PL-PRS-BVA-KISSAT is illustrated
in Figure 3. Essentially, all Kissat-MAB solvers act as both producers and consumers within this
sharing strategy.

Our portfolio is configured with 31 Kissat-MAB solvers. Nineteen of these solvers are launched
directly on the formula obtained after PRS-PRE, while the remaining twelve are initiated on the
formula reduced by the BVA technique. We opted to use all twelve BVA configurations, as shown in
Table 1, because each configuration can outperform the others on certain problems. This approach is
advantageous as it does not rely on the specific type of SAT problem being addressed. However, if the
number of clauses in the formula processed by BVA reaches 10 million, only the 𝑂𝐷-𝑇𝑀 configuration
is instantiated. This choice is based on its overall superior performance as indicated in Table 1.

Clause sharing in the presence of preprocessing techniques must be handled with great care, as
some simplifications can compromise the soundness of the entire solving process. According to [6],
clause sharing among solvers working on formulas treated with BVA preprocessing remains sound
if the introduced variables are globally fresh, meaning no two solvers have different definitions for
the same variable. Therefore, to maintain clause sharing between the initial Kissat-MAB solvers
and those launched after the various BVA configurations, we must select a single reduced formula. In
PL-PRS-BVA-KISSAT, we choose the most reduced formula (with the fewest clauses) from the different
BVA configurations. This approach is both simple and efficient, as it does not require significant CPU
time. Figure 4 illustrates this final point.

It is worth noting that each Kissat-MAB populates its SharingEntity export buffer with clauses
derived from conflict analysis, leading to the presence of new variables in the shared clauses. Thus the
solvers filter their import buffer by examining the variables in the received clauses. If a variable from a
received clause is either eliminated or unknown, the solvers ignore that clause.

2The threshold for the cumulative size of the selected clauses is 1500 in terms of literals
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4. Evaluation

For a thorough analysis of the performance of our parallel solver, we ran an experiment using all 400
instances from the 2023 SAT competition with a timeout of 5000 seconds. This experiment was done
using the EC2 instances m6i.16xlarge from AWS. The instance consists of an Intel Xeon 8375C (Ice
Lake) CPU coupled to a 256 GB DDR4 RAM and runs Ubuntu 24.04. The CPU contains 32 cores with
hyperthreading (64 logical threads) [16].

We compare the results of PL-PRS-BVA-KISSAT with those of PRS 2023 [5], the winner, and
P-Kissat 2023 [8], the third-place solver of the 2023 Parallel SAT Competition. The choice of the
winner as a baseline is evident. The selection of the third-place solver is motivated by the fact that our
new solver is essentially an upgrade of P-Kissat 2023. Table 2 and ?? highlight the outputs. The top
line in Table 2 shows the virtual best solver (VBS).

solver Average PAR2 SAT UNSAT Resolved
VBS 1432.20 153 194 347
PL-PRS-BVA-KISSAT 1556.70 151 189 340
PRS 2023 2272.36 143 177 320
P-Kissat 2824.57 127 170 297

Table 2
PL-PRS-BVA-KISSAT performance in the experiment compared to the performance of PRS 2023.

Table 2 and ?? demonstrate that PL-PRS-BVA-KISSAT outperforms PRS 2023 in both SAT and
UNSAT instances. Specifically, in Table 2 we see that our solver is quite close to the VBS, especially on
the SAT instances.

On one hand, ?? illustrates that numerous SAT instances were solved exclusively by our solver
compared to P-Kissat 2023, with PRS-PRE significantly simplifying the process for many of them.
When compared to PRS 2023, as shown in ??, we observe a notable speedup in some instances, we think
that it could be thanks to our new diversification process, but further evaluation is required to confirm it.
On the other hand, ?? and ?? show a substantial number of UNSAT instances that were efficiently solved
solely by PL-PRS-BVA-KISSAT which is likely thanks to the use of BVA preprocessing technique.
Additionally, it should be noted that PRS-PRE enables PL-PRS-BVA-KISSAT to solve a considerable
number of UNSAT instances on which P-Kissat 2023 timed out.

Running the Kissat-MAB solvers in parallel with the BVA preprocessing allows us to efficiently solve
problems without having all solvers start on the reduced formula obtained from the BVA technique.
Specifically, out of the 340 instances, 202 instances (which represents 59%) were resolved by the initial
nineteen Kissat-MAB solvers. This highlights the effectiveness of our parallel approach in handling a



significant portion of the problem instances without the need for additional simplification steps in the
initial group of solvers, clause sharing with the new solvers is enough.

5. Conclusion

In this paper, we introduced PL-PRS-BVA-KISSAT, a parallel SAT solver submitted to the SAT Competi-
tion 2024. By leveraging our new version of the Painless framework, we effectively integrated advanced
preprocessing techniques, including Bounded Variable Addition (BVA) and the PRS-PRE method, with
Kissat-MAB CDCL solvers and the HordeSat clause-sharing strategy.

In our implementation of the BVA technique we proposed the use of different queue orderings and
tie-breaking heuristics. Aligning with our objective of achieving maximum reductions, this approach led
to a higher reduction rate in 36 instances when compared to the state-of-the-art 𝑂𝐷-𝑇3𝐻 configuration.
The results highlight that the queue ordering strategy𝑂𝐷 , combined with specific tie-breaking heuristics,
particularly 𝑂𝐷-𝑇𝑀 , yields the most substantial reductions in formula size. Conversely, configurations
based on random ordering (𝑂𝑅) were less effective overall but still achieved notable maximum reductions
in some instances, suggesting that randomness can occasionally benefit the reduction process.

Overall, our experiments demonstrate that PL-PRS-BVA-KISSAT significantly outperforms the pre-
vious year’s winner, PRS 2023, both in terms of PAR2 scores and the number of instances solved. Notably,
our solver excelled in instances where the BVA technique introduced new variables, underscoring the
importance of effective preprocessing in enhancing solver performance.

Looking forward, our work opens avenues for further exploration into the integration of diverse
preprocessing techniques within parallel solvers. Future efforts will focus on developing more sophisti-
cated heuristics for selecting and combining preprocessing strategies to optimize clause sharing while
maintaining soundness. Additionally, we aim to refine the decision-making processes within the solver
to better adapt to the structural characteristics of different SAT problems, thereby improving the overall
efficiency and robustness of parallel SAT solving methodologies.

Our findings confirm the potential of parallel preprocessing techniques in SAT solving and provide a
solid foundation for future advancements in this field.
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